Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Onur Şahin, ${ }^{\text {a }}$ C Ciğdem Albayrak, ${ }^{\text {b }}$ Mustafa Odabașoğlu ${ }^{\text {b }}$ and Orhan Büyükgüngör ${ }^{\text {a }}$ *
${ }^{\text {a }}$ Department of Physics, Ondokuz Mayis University, TR-55139 Samsun, Turkey, and
${ }^{\mathbf{b}}$ Department of Chemistry, Ondokuz Mayis University, TR-55139 Samsun, Turkey

Correspondence e-mail: onurs@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.033$
$w R$ factor $=0.080$
Data-to-parameter ratio $=16.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(E)-5-(4-Bromophenyldiazenyl)salicylaldehyde

The molecule of the title compound, $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}_{2}$, is approximately planar and displays a trans configuration with respect to the $\mathrm{N}=\mathrm{N}$ double bond. The dihedral angle between the two aromatic rings is $3.65(16)^{\circ}$. The molecules are linked by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a twodimensional network.

Comment

Optically active azobenzene polymers are very important functional materials because of their photoresponsive properties. The pendant azobenzene groups in these materials behave as both photoresponsive chromophores and mesogens (Labarthet et al., 1999). Recently, the formation of holographic gratings with polymeric azobenzene liquid crystals containing only azobenzene groups, each group being mesogenic and photoresponsive, was reported (Yamamoto et al., 2001).

(I)

An ORTEP3 (Farrugia, 1997) view of the molecule of the title compound, (I), and a packing diagram are shown in Figs. 1 and 2 , respectively. Compound (I) is isostructural with the corresponding Cl-containing compound, (E)-5-(4-chlorophenyldiazenyl)salicylaldehyde (Şahin et al., 2005), with small differences for some bond lengths due to the Br attached to the $\mathrm{C} 8-\mathrm{C} 13$ benzene ring. In the azo group, the $\mathrm{N} 1-\mathrm{C} 5$ and $\mathrm{N} 2-\mathrm{C} 8$ bond lengths (Table 1) indicate significant singlebond character, whereas the $\mathrm{N} 1=\mathrm{N} 2$ bond length is indicative of significant double-bond character. Similar values have been observed in other trans-azo compounds (e.g. Şahin et al., 2005).

Figure 1
A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown as a dashed line.

Received 23 September 2005
Accepted 9 November 2005
Online 16 November 2005

Figure 2
A packing diagram for (I), showing hydrogen bonds as dashed lines.

The $\mathrm{C} 7=\mathrm{O} 1$ and $\mathrm{C} 2-\mathrm{O} 2$ bond lengths agree with the corresponding distances in the chloro compound [1.223 (4) and 1.347 (3) A., respectively; Şahin et al., 2005].

Compound (I) consists of benzene rings A (C1-C6) and B (C8-C13), their substituents, and the azo unit C (C5$\mathrm{N} 1=\mathrm{N} 2-\mathrm{C} 8$). Benzene rings A and B adopt a trans configuration about the azo functional group, as observed in the crystal structures of other previously studied azo compounds. In (I), the dihedral angle between A and B rings is $3.65(16)^{\circ}$, the dihedral angle for A / C is $3.3(3)^{\circ}$, and $0.6(4)^{\circ}$ for B / C. Compound (I) also displays intramolecular and weak intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), giving a twodimensional network for the crystal structure (Fig. 2).

Experimental

The title compound was prepared according to the literature method of Odabaşoğlu et al. (2003), using p-bromoaniline and salicylaldehyde as starting materials. The product was crystallized from toluene to obtain well shaped crystals (yield 74\%; m.p. 489-491 K).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}_{2} \\
& M_{r}=305.13 \\
& \text { Monoclinic, } P 2_{2} \\
& a=3.8914(6) \AA \\
& b=5.8043(5) \AA \\
& c=25.745(4) \AA \\
& \beta=92.101(12)^{\circ} \\
& V=581.11(13) \AA^{3} \\
& Z=2
\end{aligned}
$$

Data collection

Stoe IPDS-2 diffractometer ω scans Absorption correction: integration (X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.258, T_{\text {max }}=0.854$
9332 measured reflections
2744 independent reflections

2547 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.082
$$

$\theta_{\text {max }}=28.0^{\circ}$
$h=-5 \rightarrow 5$
$k=-7 \rightarrow 7$
$l=-33 \rightarrow 33$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.080$
$S=1.07$
2744 reflections
167 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0352 P)^{2}\right. \\
& +0.0931 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.31 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.99 \mathrm{e}^{\circ} \AA^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& \text { with } 1213 \text { Friedel pairs } \\
& \text { Flack parameter }=0.140(11)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 2-\mathrm{O} 2$	$1.357(4)$	$\mathrm{C} 8-\mathrm{N} 2$	$1.426(4)$
$\mathrm{C} 5-\mathrm{N} 1$	$1.426(4)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.259(4)$
$\mathrm{C} 7-\mathrm{O} 1$	$1.227(5)$		
			$124.4(3)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$116.6(4)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$115.5(3)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	$123.5(3)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 2$	$124.4(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{N} 1$	$117.0(3)$	$\mathrm{C} 13-\mathrm{C} 8-\mathrm{N} 2$	
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8$	$-179.1(3)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2 \cdots O1	$0.84(6)$	$1.99(6)$	$2.693(4)$	$141(5)$
${\text { O2-H2 } 21^{\mathrm{i}}}^{\mathrm{O}}$	$0.84(6)$	$2.41(6)$	$2.929(4)$	121 (5)

Symmetry code: (i) $-x, y+\frac{1}{2},-z+2$.

All C-bonded H atoms were refined using a riding model, with $\mathrm{C}-$ H distances constrained to $0.93 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$. The H atom of the hydroxyl group was found in a difference map and refined with an $\mathrm{O}-\mathrm{H}$ distance restrained to $0.83(5) \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.

organic papers

Labarthet, F. L., Rochon, P. \& Natansohn, A. (1999). Appl. Phys. Lett. 75, 1377-1379.
Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. \& Goesmann, H. (2003). Acta Cryst. C59, o234-o236.
Şahin, O., Albayrak, Ç., Odabaşoğlu, M., \& Büyükgüngör, O. (2005). Acta Cryst. E61, o4149-o4150..

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Stoe \& Cie (2002). X - $A R E A$ and $X-R E D 32$. Stoe \& Cie, Darmstadt, Germany. Yamamoto, T., Ohashi, A., Yoneyama, S., Hasegawa, M., Tsutsumi, O., Kanazawa, A., Shiono, T. \& Ikeda, T. (2001). J. Phys. Chem. B, 105, 23082313.

